IOURNAL OF COMPUTATIONAL PHYSICS 116, 73-96 (1995)

Domain Decomposition and the Compact Fourth-Order Algorithm
for the Navier—Stokes Equations

J. Rokicki* anp J. M. FLoryaN

Department of Mechanical Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B9

Received March 8, 1993

We consider a fourth-order, compact finite-difference method for
the Navier—Stokes equations using the streamfunction—vorticity for-
mulation. Varicus algebraic beundary formulas for vorticity are in-
vestigated including new implicit formulas of the third and fourth
order. An atgorithm for determination of pressure from a suitable
Poisson equation is given. Results of various tests show that the
error of the algorithm is proportional to Re? - A*. Domain decomposi-
tion coupled with multiprocessing was investigated as a method
for acceleration of computations. it is shown that the acceleration
approaches the theoretical maximum. @ 1995 Academic Press, Inc.

i. INTRODUCTION

The main objective of the present work is to develop a fast
and accurate algorithm that is capable of accurately predicting
medium to large Reynolds number flows in non-standard geom-
etries. Second-order discretization schemes (e.g., classic [1])
require so many grid points for accurate calculations that their
application to realistic flow problems becomes impractical.
Spectral methods provide high accuracy but have difficulties
in handling non-standard geometries. The present work focuses
on higher-order compact finite-difference methods which are
sufficiently flexible to deal with complicated geometries and
can provide the required accuracy at an acceptable computa-
tional cost. The streamfunction—vorticity formulation is se-
lected to bypass direct evaluation of pressure.

A number of implementations of compact differencing to
the streamfunction—vorticity formulation of the flow problem
can be found in the existing literature. A spline collocation
procedure is used in [2], higher-order equations are split into
a system of equations of first order in [3], and first derivatives
are completely eliminated as independent variables in [4-6].
Different procedures to obtain boundary formulas for vorticity
range from simple algebraic formulas [4, 7, 3] to more complex
ones based on non-local orthogonal projection techniques
[8-10].

¥ Permanent address: Institute of Aeronautics and Applied Mechanics,
Warsaw University of Technology, Nowowiejska 22/24, (0-665 Warsaw,
Poland.

The algorithm presented here is based on the method of
Dennis and Hudson [4] with correction for the vorticity bound-
ary formula. The issue of an accurate treatment of boundary
conditions is discussed in detail because of its importance for
the domain decomposition method. The algorithm is extended
to include fourth-order accurate determination of pressure from
the known vorticity and velocity fields.

Verification of highly accurate algorithms is difficult because
their performance is strongly affected by even small inconsis-
tencies in the test problems. Acceptable tests are hard to identify
due to the lack of non-trivial exact solutions of the Navier—
Stokes equations. The most popular tests involving flow in a
cavity are inappropriate because of singularities in the cavity’s
comners which mask the true behaviour of the algorithm. Be-
cause of the lack of sufficient testing, the existing fourth-order
algorithms can be considered as being only qualitatively verified
(see Section 2.1.E) and, therefore, may not provide the accuracy
as claimed.

Two types of tests are used in the present work. In the
first one, numerical solutions are compared directly with exact,
specially constructed, ‘‘artificial’® solutions of the Navier—
Stokes equations. In the second one, the performance of the
algorithm is verified by repeating calculations on a sequence
of grids and estimating the true error and its variations as a
function of grid step size A. While the exact solution does not
need to be known in the latter case, its success hinges on the
problem specification, which has to guarantee a sufficient de-
gree of smoothness of the solution.

Typical, realistic problems in fluid dynamics require enor-
mous amounts of computer work (as measured by the execution
time). With the fixed processor speed, significant acceleration
can be obtained only by using several processors working in
parallel. The full advantage of this approach can be achieved
only if the numerical algorithm itself is suitable for paralleliza-
tion. The domain decomposition method is well suited for paral-
lelization of a very broad class of problems. The method con-
sists of dividing the computational domain into overlapping
subdomains and solving the original problem on each subdo-
main separately, with the appropriate transfer of boundary infor-
mation between the neighbouring subdomains, with each sub-

0021-9991/95 $6.00
Copyright © 995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

80 ROKICKI AND FLORYAN

domain being served by a different processor. This approach
was used [11-14] in the case of primitive variables formulation
and second-order accurate methods but, to the best of our
knowledge, has not been extended either to the streamfunc-
tion—-vorticity formulation or to the fourth-order methods.
Gajjar [15] investigated parallelism in the case of streamfunc-
tion—vorticity formulation, but without using domain decompo-
sition.

The aigorithm described in this paper takes advantage of
the domain decomposition principles and thus is suitable for
implementation on several processors working concurrently.
Various practical and theoretical problems arising from multi-
processor implementation are analysed for a model problem.
The acceleration of computations is tested in numerical experi-
ments with the multiprocessor-computer being simulated using
a conventional one.

The paper is organized as follows. Section 2 describes single
domain {single processor) implementation of the algorithm.
Section 2.1 gives discretization formulas and their numerical
verification. Section 2.2 describes the solution to the pressure
problem. Section 3 deals with the multidomain (multiprocessor)
implementation. Section 4 gives a short summary of the
main conclusions.

2. SINGLE DOMAIN (SINGLE PROCESSOR)
IMPLEMENTATION

2.1, Flow Problem
2.1.A. Preliminaries

The Navier-Stokes equations written in the streamfunc-
tion—vorticity formulation for a two-dimensional incompress-
ible flow in a cartesian reference system (x, y} are

Af=Re(ul, + v —curlf,), (2.1a)
Ayr=—¢, (2.1b)
W=y, U=, @.10)

where { = v, — u, is the vorticity, ¥ is the streamfunction,
(u, v) denote velocity components in the (x, ¥) direction, £, =
(fu. fiz} 18 the known external body force and curl f, =
df/dx — df,/9y. The usual, natural conditions for the stream-
function ¢ and its normal derivative dy/on on the boundary
I" are

terl (2.2a)

(2.2b)

a1},
b(t).

| r
agi/én|

It is assumed that all the necessary tangential derivatives of
a(t) and b(1) exist and are known. We also consider the auxiliary
boundary conditions of the form

lr=a@), teT

£|F = C(t)’

(2.3a)
{2.3b)

where a(r) is the same as in (2.2a) while ¢(z) can be arbitrary.
There are cases where boundary conditions (2.3), i.e., prescrib-
ing vorticity at the boundary, are perfectly natural as, for exam-
ple, on the line of symmetry of a low or for periodic flows.
These boundary conditions appear to be natural also in the case
of domain decomposition (Section 3).

Problem (2.1} with boundary conditions (2.3) can be solved
directly. Problem (2.1} with boundary conditions (2.2} can be
solved using boundary conditions (2.3) and determining itera-
tively c(#), so that the boundary condition (2.2b) is also satisfied.

The solution algorithm considered here has a classical struc-
ture. Its main steps are listed below in order to simplify discus-
sion in the rest of the paper. These steps are (regardless of the
discretization type):

1. [Initialize vorticity field ¢ in the flow region) and at
the boundary T'.

2. Solve Poisson equation (2.1b) for the streamfunction
with the Dirichlet boundary conditions (2.2a), i.e.,

Ay=~{ Plr=a(n), t€T. (2.4)

3. Calculate velocity from streamfunction using (2.1c).

4. Correct the boundary value { of vorticity in order to
satisfy the Neumann boundary condition (2.2b).

5. Solve the linear PDE for vorticity (2.1a) with the Dirich-
let boundary conditions determined in step 4:

Al =Re(ul, +vi, —curlf,), {|r= .

(2.5)
6. Check for the convergence of vorticity { and streamfunc-
tion . If there is no convergence proceed to step 2.

In the following section, a fourth-order finite-difference discret-
ization scheme for systems (2.4) and (2.5), together with a
suitable formula for calculation of velocity from (2.1¢), are
presented. The various boundary correction formulas for vortic-
ity are investigated in Section 2.1.C.

2.1.B. Discretization of the Field Equations

We restrict our considerations to the flow region (2 in the
form of a unit square 0 = x = 1,0 =y = |. A uniform grid
of constant step size A in the x and y directions is chosen.
Locations of the grid points are defined as [(i — 1)A, (j — 1)4],
Li=1,..,N+1, h=1/N

Consider a general, linear convection—diffusion equation in
the form:

Gt by — (Ap, + T,) = R, (2.6)

DOMAIN DECOMPOSITION FOR NAVIER-STOKES EQUATIONS 81

FIG. 1. Sketch of a typical computational molecule in the interior of the
solution domain.

where the lower index denotes a differentiation operator, and
the functions i, ¥, and R are prescribed. Following Dennis and
Hudson [4], we replace (2.6) with its A*-accurate, nine point,
finite-difference approximation to get

dlqbl + o +da¢s_d0 ¢O+BG=O, (2-7)
where the Southwell index notation is used as indicated in Fig.

1. A similar scheme was reported earlier by Gupta [5, 6]. The
coefficients d, and B, in {2.7) are given by the formulas:

dy =40 + 20%(@3 + 05} — AW (i + Tyo)
dis = 8 F dhiy + K0tk — 2ii)
& Wliedtg + Doltyg — (Al)2
dys = 8 F 4k, + KXOF — 20,0)
* Bliigh,o + Dolyo — (AT)2
dsp = 2 7 hiity + Do) + fgDohy2 — Hyh42
dos = 2 * hiity — 0o) — abohy2 + Hyb 2
By = —HI[8R, + (1 — hiiy/2)R, + (1 — hG/2)R,

+ (1 + hiiy2)R; + (1 + h0o/2)R4], (2.8)
where A = 3%/ax? + #%/ay’, H= a0/dx + ai/dy. The numeri-
cal scheme (2.7)—(2.8) can be used for discretization of the
vorticity transport equation (2.5), using the following substitu-
tions:
a=Re-u, 0=Re-v, ¢=¢ R=—Re-curlf,. (2.9)
The first and second derivatives of velocity in (2.8) can be
calculated with the usual second-order finite-difference formu-
las [4]. The same applies to the divergence of velocity field
(#1,y + U,o) which has to be calculated in spite of the fact that
for incompressible flow it vanishes everywhere. The velocity
components (i, v) have to be evaluated with fourth-order accu-
racy (cf. [6]), however,

Velocity evaluation constitutes a problem of calculation of
a derivative of a function whose Laplacian is known. Use of
Taylor expansion gives

Uy = lffyu - (f.,L'Ig - l,tf_;)/zh - llll\rohz/é + O(hd),
Yo = Bthyo — Pouo = — Ly = Pano,
where 3,0 = 8*/dy’ and i, = 8°¢/dx?3y, with both deriva-
tives being evaluated at point O (see Fig. 1). Replacing {,, and

Warvo With their central, finite-difference, #*-accurate approxi-
mations we obtain

ty = Yo = (b —)20 + (& — LIA/12

+ (s — 24n + s — i + 24y — §)/ 128 + O(F). (2.10a)
Similarly,
Uy = tho = (Y0 — d)2h + ({ — (W12

+ (s = 24 + s — s + 24 —)/ 120 + O, (2.10b)

The system of linear equations for vorticity resulting from
(2.7)—(2.9) is solved iteratively by the Gauss—Seidel relax-
ation procedure

0= (1= @) + wld{P - + o + Billdy,
(2.11)

where w is the relaxation factor, the upper subscript refers to
the iteration number and * denotes the most recent value of £

The matrix of coefficients corresponding to the system of
linear equations (2.7)—(2.9) may not be, in general, diagonally
dominant. This may happen when the Reynolds number is large
and the step size is not small enough [4]. We found out, through
numerical experiments, that the present algorithm converges
even if the diagonal dominance is lost.

The Poisson equation (2.4) for the streamfunction ¢ can be
discretized in the same way as the equation for vorticity by
using (2.7) and (2.8) and taking

(2.12)

The resulting system of linear equations is solved using the
same relaxation procedure with { replaced by ¢ in (2.11). The
relaxation factors for ¢ and ¢ are in general different.

In the actual calculations, only a few Gauss—Seidel iterations
of the discretized vorticity (2.5) and streamnfunction (2.4) equa-
tions are to be carried out at each step of the external iteration
procedure. If Egs. (2.4) and (2.5) were solved exactly at each
step, the general algorithm would become very unstable and
significant underrelaxation would be required for the vorticity
boundary formula.

82 ROKICKI AND FLORYAN

FIG. 2. Sketch of a typical computational molecule on a boundary of the
solution domain.

2.1.C. Discretization of Boundary Formula for Vorticity

The fourth step of the algorithm (Section 2.1.A) requires
updating the boundary value of vorticity in order to satisfy
condition (2.2b) for the normal derivative of streamfunction.
Different classical second-order formulas are discussed in
[16, 7). The fourth-order formula given by Dennis and Hudson
[4] is in fact only second-order accurate, as shown later in
this section. The true fourth- and third-order formulas will be
derived below.

Consider a vicinity of a point on the boundary (Fig. 2). Use
of Taylor expansions gives

(84’1 - 7‘/’0 - ‘I'lz)"hZ - 6(!!,,0/h = Q%no - 'f/4n0h2/3

— U of5 + O, (2.13)

where i, denotes a*/on* at point “*0"° (Fig. 2) and other
subscripts have a similar meaning. Higher normal derivatives
of the streamfunction are eliminated using (2.1b), i.e.,

Yoo = —do = Ynso, Wawo = — om0 + Laro F s,

Yo = — oo + Liaeo + Poaros (2.14)

where i,y denotes 3%/d+* (T—tangential direction) at point
““0”" and other subscripts have a similar meaning. Substitution
of {(2.14) into (2.13) results in

[Bun — T — ¢dl B> + P1 = =245 + Luoh3 + {3oht'/5

- §210h2/3 _§n210h3/5 + O(h4),
(2.15)

where
P = —64no/h + 2ng + o3 + YrahlS (2.16)

is known at the boundary (it vanishes if the velocity is zero

there). Neglecting terms O{4%) in (2.15} resuits in the well-
known second-order Jensen formula [16], i.e.,

=24 = (8¢ — Ty — Pl — 6y9/h + 2. (2.17)

Normal derivatives £y, and {3, can be eliminated from (2.15) by -
expressing { at points 1, 2, and 3 in terms of Taylor expansions
centered at point **0,”” i.e.,

38 =36+ &= G+ R+ OGY,
50 —46+ 6 =20 — Wl + O,
This results in

15[(8¢1 - 7% - %)/hz + P] + (]6§| - 11§2 + 2§3)

= — 234 - (Shzfzro + 3h3§n270) + O(h“). (2.18)

Dennis and Hudson [4] considered a special case of zero veloc-
ity at the boundary, i.e., ¢y =u =v =0y = 0, P = 0), and
obtained boundary formula (Eq. (59) in [4]} in the form

15(84n —)R + (164, — 114+ 25) = =234, (2.19)

The above formula agrees with (2.18) only when —{&, =
Yo = 0 and — 0 = W20 = 0, which is not the case in
general. Comparison of (2.19) and (2.18) shows that the Dennis
and Hudson’s formula is only second-order accurate. This con-
clusion will be verified using numerical experiments discussed
in Section 2.1.E.

The true fourth-order accurate formula is obtained by approx-
imating ¢, with the second-order and £,, with the first-order
finite-difference formulas and substituting them into (2.18).
Considering values of vorticity &, £, . &- at all boundary points
{see Fig. 2) as unknown, the final equation can be written as

—15((8ds = T — Y + P)
— (04— 11G+25) (220)

20 + 195 + 24 =

= 3(L- + i) + O,

In the case of a grid point located next to a corner {see Fig.
3}, where £ is known but ¢}, is not, Eq. (2.20) becomes

M
03

2

#

°1— 01 «1+

%

%
0-_,0 +
77T

FIG. 3. Sketch of a typical computational molecule in the immediate
neighbourheod of a comer of the solution domain.

DOMAIN DECOMPOSITION FOR NAVIER-STOKES EQUATIONS 83

300 + 194 + 28— = —150(84n — Tehy — Y)/h* + P}

= (104 — 115 +24) = 34,-
= 24 + O

(2.20a)

One may note that when the boundary conditions specified
along the walls meeting at a comner are such that £, becomes
singular, the accuracy of the approximation may deteriorate in
an unpredictable manner.

Equations (2.20) written for each grid point along the bound-
ary (except corners) result in a system of linear equations with
a tridiagonal, symmetric, and diagonally dominant matrix of
coefficients, which guarantees existence of its solution. The
numerical cost of obtaining the solution is negligibly small in
comparison with the cost of a single iteration of the discretized
field equations.

Other fourth-order accurate boundary formulas for vorticity
can be obtained by noting that the Laplacian of vorticity A{ =
&3, + &, 18 known at the boundary from the momentum equation
(2.1a). One can replace (2.14) with

Yo = = (1 + @)y + (1 — @)or0 + @(AdN + o,
‘ffSno =—(1+ 18)*53”0 +(1 - B){nirﬂ + B(AC).»O + Yharo,

where w, 3 are arbitrary real constants. Values of vorticity at
the internal points ({3 or/and ¢;} appearing in the boundary
formula (2.20) can be eliminated by conscientious selection of
« and 8. All formulas, regardless of the particular values of «
and B, are fourth-order accurate. We have determined through
numerical experiments that none of them is significantly supe-
rior to the original one (2.20),

The third-order formulas can be obtained by neglecting O(4°)
terms in (2.15) and (2.16). Approximation of the normal and
tangential derivatives of vorticity in the form

$oug = (fo— 241 + fz)/hz + O(h),
Lo = (G- — 24 + Lo K + OB

leads for the boundary formula

Lr +34+ & = =3P — 24— L]+ OW), (221

whose assembly over all boundary points (without corners)
results in a system of equations with a tridiagonal, symmetric,
diagonally dominant coefficient matrix.

It is worth noting, that formulas with accuracy O(#*) with
respect to £ satisfy the natural boundary condition (2.2b) with
accuracy O (cf. (2.15)—(2.16)). Since it is the accuracy
of the original problem (2.1)—(2.2) that is of interest, both the
third- and the fourth-order boundary formulas can be used in
order to get a fourth-order algorithm.

2.1.D. Verification Methodology

We employ two different methods to verify accuracy of the
proposed algorithm. The best and simplest method is to compare
the computed result with an exact solution. Alternatively, one
may investigate properties of the computed solution as a func-
tion of grid size and to compare them with the analytical error
estimates. We begin our discussion with the former one.

The known exact solutions of Navier—Stokes equations lead
to a trivial form of the nonlinear terms and are, therefore, too
simple to be used for meaningful verification purposes; it is
the approximation of the nonlinear terms that is of crucial
importance for performance of the whele algorithm. Useful
tests can be carried out, however, by constructing artificial
solutions, in a manner somewhat similar to [4, 17].

Let ¢ be an arbitrary {and sufficiently smooth) function of
two variables. If (1, v) is taken as ““velocity’’ defined by (2.1c),
£ as ““vorticity”” defined by (2.1b), then introduction of the
(fictitous) “‘body force’’ £, as

curlf, = —A{/Re + uf, + v, (2.22)
satisfies (2.1a) identically. Although one does not need to solve
(2.22) for £,, the solution always exists provided the right-hand
side of (2.22) is sufficiently regular. This may be shown by
noting that substitution f, = [0®,/dy, —d®,/ox] + grad @,
reduces (2.22) to the Poisson equation for @, with &, being ar-
bitrary.

The test examples should be setected so that (i) derivatives
of ¢ are easily evaluated analytically, (i1} u{; + v{, does not
vanish everywhere, (iii) boundary conditions are fulfilled, and
(iv) the “*flow’ is not symmetric (to make the problem more
general). As an example consider the following construction.
Take

P(x, y) = f(x,9) - glx, y), {(2.23a)

where

Jy)y=y-ax)+ U -y} ax),
gla,y)y =x-y - la(y) + 8- b(y)]
+ (0 —x) v la2y) + 8- b(¥)],
a(t) =1 — cos(2@t) + sin{271) - (1 — cos(2m1))/10,
b(t) =2 (1 — cos(mt)) - sin{mt), (2.23c)

(2.23b)

and <y, 7v,, & are arbitrary constants. Functions a(x, #) and
b(x, t) have the properties
ay=ak)y=a'0y=a"k)=0,
b(0) = b2k — 1Yy=5'(0) =0,
b'(2k — 1) = —dm,

24 ROKICKI AND FLORYAN

fork = 1, 2, ..., and prime denotes differentiation with respect
to ¢ As a result, ¢ and dif/on vanish on the boundary of the
unit square when § = 0, while if & is not zero, ¢ = 0 on the
boundary but the tangent velocity (v, = —d¥/dn) dees not
vanish on the upper wall.

In the second method of verification, the exact solution does
not need to be known, which is the case in most practical
applications. The accuracy of the algorithm can be tested by
repeating calculations on a sequence of grids (with diminishing
grid step size} and comparing the error of the computed solution
with its analytical estimates.

Let the grid sequence with steps h, be defined as
k=12,

hk = hﬂqk, O<q< 1,

N, = Uk + 1. (2.24)

Let O(hy) denote the solution obtained on the kth grid and
let this solution be suitably extended onto the whole solution
domain. The following propositions hold:

1. If the sequence ®ih,) converges to some ${0) and
C > (0 exists such that

VE=0, [dGh)— dWO)| = Che,

a>0, h=hg* 0<g<],
then
Vk=0, [|®h) — P = (1 + ¢*)Chi
(NP teer) — P || = [| @) — PO)|
+ | @) — PO = (1 + ¢°)ChE),
where | - || denotes a suitable norm.

2. Conversely, if the sequence ®{h,) € V (V-Banach space
with the norm | - [j) has the property ihat

AC>0,Vk=0, [P — (D(hk)” = Chg,

a>0, h=hgt, 0<g<l, 2.29)
then the limit ®(0) € V exists and
VE=0, [|®(n) - Q)| = Chgi(l —g=). (2.26)

To prove that the limit exists observe that V is complete and
that the Cauchy sequence converges geometrically, i.e.,

Vi, s >0, [@) — D))
= |[q)(hk+5+l) - cb(hkﬂ—) ‘
e 4 [D) — DRy |

£ Cllife oo+ B = ChE(L+ g% + -+~ + ¢)
= g*Ch§i(l — g°).

To prove inequality (2.26) observe that

M
| PR — PO = 20 | D) — Pro |

+ ” (I)(hk+M+l) - (I)(O) ”

= J;) || ¢(hk+.r+l) - q)(hk+5) ”

=Chi(l +gq*+g*+--)
= Chy(1 — g*).

The second proposition states that it is possible to verify the
order of accuracy of the discretization scheme and to estimate
the error of the computed solution, without knowing the actual
(exact} solution.

In the numerical experiments, we are able to check (2.25)
only on a finite number of grids. The siep sequences do not
need to be strictly in the form (2.24). Wz used

N, = NEAREST EVEN_TO[(N, — 1)/g*] + 1

he=UN-D, 0<g<l, k=12, (2.27)
with N, = 11 and ¢ = 27" = 0.79. The more customary
selection of ¢ = 27! would diminish the step size too rapidly to
obtain the desired number of solutions. The following numerical

values for N, resulted from (2.27):

11,13, 17, 21, 25, 33, 41, 51, 63, 81, 101, 125, 163, 201, 251.
(2.28)

Since we observed that the greatest error of vorticity occurred
always on the boundary I of the solution domain, the numerical
solution was extended only onto the boundary (using a fourth-
order spline interpolation technique). The max and L, norms
were approximated using a subgrid which had twice as many
points as the finest grid used in the computations.

The discretization scheme will exhibit its true convergence
properties only if the solution is smooth enough. This can be
guaranteed by the appropriate selection of both the geometry
of the solution domain and the boundary conditions, which
cannot lead to the appearance of discontinuities in the solution
and several of its higher derivatives. For example, it might be
necessary to require that the sixth derivative of vorticity exists
and is bounded—cf. error of Numerov formula [4]. The very
popular computational example of a square cavity with the
moving upper wall [2, 3, 5, 6, 15] has a solution with discontinu-
ous velocity and infinite vorticity at the two upper corners. As

DOMAIN DECOMPOSITION FOR NAVIER-STOKES EQUATIONS 85

FIG. 4. Streamfunction distribution (¢ X 1000) for Re = 1000, Example
1, Section 2.1.E.

a matter of fact, all problems where the boundary has corners
(step contraction of the channel, cavity problem with smooth
boundary conditions, etc.) have solutions which are either them-
selves locally unbounded or have derivatives which are un-
bounded. One can determine analytically (for the Stokes flow)
that near a concave corner (corner angle 90°) vorticity £ ~ r1™
and thus its second derivative is infinite, while for the convex
corner (corner angle 270°) vorticity is itself singular, i.c., £ ~
r <% 1'18]. Here r denotes radial distance from the corner. The
standard test examples, as discussed above, might be acceptable
for lower order methods. Highly accurate methods, such as the
one studied here, do pick up all inconsistencies in the problem
specification and this makes their rational testing extremely
taxing.

Further, one should keep in mind that the computational test
must have a non-trivial solution, so that #{, + v{, does not
vanish, while the boundaries are as simple as possible. These
requirements are fulfilled, for example, by a channel flow driven
by imposed periodic tangent and/or normal velocity distribu-
tion, No singularities are expected and the numerical solu-
tion remains smooth even for moderately high (10°-10%
Revnolds numbers.

2.1.LE. Numerical Examples

ExampLE 1. The (artificial} flow in a unit square cavity is
considered. The streamfunction (Fig. 4) is known and is de-
scribed by formulas (2.23a)—(2.23¢) with y, = 2 - 107%, v, =
1073, & = 0. The flow is generated solely by the presence of
a non-potential body force (2.2) with velocity vanishing on the
boundary. There is no velocity scale and the Reynolds number
denotes the reciprocal of kinematic viscosity. The tests were
carmied out for Re = 1/y = 1000. The Reynelds number
calculated a posteriori, with the aid of maximum internal veloc-
Y Uma, was much smaller, ie., Rey, = 1 - vy == 22,
Solutions were sought on the sequence of grids (2.27)-(2.28).

The main criteria for stopping of the Gauss—Seidel iterations
were max | ™! — ™| < 107, max | ¢t — g| < 107, where
max was taken over the whole grid and m denoted iteration
number. The error was defined as a maximum (over the whole
grid) of the difference between the calculated £(k) and the
exact £(0) values of vorticity, i.e.,
E(h) = max| {(h} = {(0)[. (2.29)
Figure 5 shows results obtained with different versions of
the algerithm. Second-order approximation of the field equa-
tions [1] and Jensen boundary condition formula (2.17) (H*FE
+ H*BC on Fig. 5) yield second-order convergence of the error,
as expected. The fourth-order discretization described in Secton
2.1.B was tested with varions formulas for boundary vorticity
(see all H*FE in Fig. 5). Surprisingly. the second-order Jensen
formula (2.17) (J-BC) delivers third-order accuracy while the
original Dennis—Hudson formula (2.19) (DH-BC) gives only
second-order. Both the third- (2.21) (H’BC) and the fourth-
order (2.20) (H*BC) formulas give fourth-order convergence
of the error and comparable absolute errors., Figure 6 shows
that when second-order formulas are used for velocity evalua-
tion, the accuracy of the whole algorithm deteriorates to second
order, despite the fact that the field equations and boundary
conditions are approximated with fourth-order accuracy. Figure
7 gives error estimates obtained without using exact solutions
and compares them to those obtained using the exact solution.
The estimates (Eqs, (2.25)—(2.26)) are

Eh) = AR — %) ~ 1.66 Alhy),

g =hih =27 a=4, (2.3

where A(h,) = max | /(h,) — {(f.)] and the max is taken over

107
10 7*
S -3
& 1)
[0’
- ’ BC
- + H
10 ™ + J-BC
+ DH-BC
+ age%eéﬂt BC
10~ s Il
” ---- const#h
.01 0.1
0 STEP 3IZE h

FIG.5. Maximum error of vorticity (Eq. (2.29)) for different discretizations
of the field equations (FE) and boundary conditions (BC). Calculations for
Example 1, Section 2.1.E, Re = 1000.

86 ROKICKI AND FLORYAN

,«" rpieis i FE+BC, hi VEL

. Gee%m FE+BC, h, VEL

’ Gee00 h' FE+BC, h® VEL
------- (:onstmh4

---- constxh

T T T T

0.1
STEP SIZE h
FIG.6. Maximum error of vorticity (Eq. (2.29)) for different discretizations
of velocity (VEL). Other conditions as in Fig, 5, See text for details.

the boundary only. Since this error is almost equal to the exact
error E(h) given by (2.29) (where the max is taken over the
whole grid), the results displayed in Fig. 7 show that the biggest
local error occurs on the boundary and that {(k) — £{0) con-
verges monotonically as 7 — 0.

ExampLE 2. In this example, we shall analyze the perfor-
mance of the algorithm in the case of periodic channel flow,
where for simplicity the period and the channel height are
of equal length. The flow is generated by specifying tangen-
tial velocity distribution v.(x) at the upper wall in the form
v.(x) = sin’(x/m), x € {0, 1), Urmex = 1, which guarantees
sufficient smoothness of the sclution. The streamfunction van-
ishes on both walls and the Reynolds number is defined by Re
=1+ v,m/¥ = 1/v. The exact solution of this problem is not

10 -
o
10 7 ff”
9(
ki
X103 .
© b4
i b
10~ o
¥ 00000 EXACT ERROR
- srtrtetctc ESTIMATED ERROR
10 - & ---- constxh
#’
FHyr T
Q.01 0
STEP SIZE h

FIG. 7. Comparison of the exact (Eq. (2.29)) and estimated (Eq. (2.30)}
errors of vorticity. Other conditions as in Fig. 5.

FIG. 8. Streamfunction distribution (i X 10600), Re = 1000, Example 2,
Section 2.1.E.

known. The numerical solution is calculated on the sequence
of grids (2.27), (2.28), using the H'FE + H*BC version of the
algorithm. A typical pattern of streamfunction distribution is
shown in Fig. 8. In the further discussion, {(k;) denotes the
solution obtained on kth grid, and {(0) denotes the unknown
exact solution. Grid functions {(k,) are extended onto the whole
boundary using a fourth-order accurate spline function. The
relative error A(h,) between two approximate solutions is de-
fined as

A(hy) = max | L) — () |/ Emas (2.31)
where max is taken over the whole boundary, and ., is the
maximum absolute value of the vorticity (as found on the
finest grid).

Figure 9 shows the distribution of the relative error A(k) as
a function of step size k for different Reynolds numbers. Since

10 ™
x10 2
Q
w
o
LLJ.]O-J
Lol
= s
3107 -
i - 5368
-5 =
10 - 8000
=16000
. ---- constxh*
10 ¢ S S T
0.01
STEP SIZE h

FIG. 9. Estimated relative error of vorticity (Eq. {2.31)), Example 2, Sec-
tion 2.1.E.

DOMAIN DECOMPOSITION FOR NAVIER-STOKES EQUATIONS 87

20
500
1000
2000
4000

miawnt

0 7!
0.01
STEP SIZE h

I T T T 5"

FIG. 10. Estimated order of discretization error (Eq. (2.32)), error =
const - A% Other conditions are as in Fig. 9.

the error A(h) is expected to be proportional to k* we also
calcuiate the exponent & (see Fig. 10} from
a(h) = In(ACh VA) In(h /Tl). (2.32)
In all cases the fourth-order convergence (i.e., @ = 4) was
obtained if the step size £ was small enough. Analysis of A(h)
in the limit of £ — 0 gives
Ahy=b Re*-h* (h—0), (233
where b = 0.3 * 0.05, regardless of the particular values of
Re and 4. It can be estimated using (2.25)-(2.26) that the true
relative error E(h) = max | Z(h) — £(0)|/ £y is not larger than
E(h) = 1.66 A(h) ~ Re? - h*/2. (2.34)
Thus, if accuracy E(k) better than & is desired, one must use
a grid with step size
h~Re”2-gh (2.35)
or smaller. When £ exceeds Re™ ", the results become meaning-
less from the accuracy point of view and; in addition, the
Gauss—Seidel iterations could become divergent. An increase
of Re necessitates reduction of the underrelaxation parameters
for vorticity and streamfunction, (w = 0.1 for Re > 4000) and
introduction of underrelaxation of velocity. One should note
that the condition £ <X Re™'? is by no means limited to our
method or to the fourth-order methods, in general. In fact,
the second-order method of Dennis and Hudson [1] can be

interpreted as a conventional finite-difference scheme applied
to the Navier—Stokes equations in which kinematic viscosity

v is distorted by a term proportional to A%. One cannot expect
results to be accurate unless ki is (much) less than Re™"? (Re ~
/).

To compare efficiency of the fourth- and second-order meth-
ods, we repeated the same calculations using the fourth-order
algorithm described in this paper and the second-order algo-
rithm of Dennis and Hudson [1] with Jensens boundary formula
(2.17). The solution obtained by the fourth-order method on
the finest grid (h = h,,;,) was used as a benchmark. The relative
error E(h) for different Reynolds numbers (see Fig. 11) was
estimated as

EQ(h) = max | {9h) = L9Pum) |/ Lnaet Enin),

5=12.4, (2.36)
where £“Y#) stands for vorticity obtained on the grid with the
step A, using the method of order 5 (s = 2 or 4) and the
maximum is taken over the boundary. The relative error E{/;,)
of the fourth-order solution on the finest grid (h = Ay,) was
estimated by formula (2.34). In the calculations, Ay, = st for
Re = 500 and hy,= zip for Re = 2000 and 4000. Analysis of
the asymptotic behaviour (h — 0) of E‘;’(h) (second-order
algorithm) gives E2(h) ~ Re - K.

The cost of both methods can be compared by assuming, for
example, that it is necessary to find a solution for Re = 4000
with 10% accuracy. The total cost T of the algorithm may be
estimated as

T=N1tC, (2.37)
where N = 1/h + 1 = number of grid points in one direction
needed to obtain the desired accuracy, it = number of iterations
to get convergence, and C = cost of a single iteration. Numerical

1003

. Re= 500
Re= 500
Re=2000
Re=2000
Re=4000
Re=4000

Adckcdch 4th QRD.
40000 2nd ORD.
#4444 4th ORD.
Go0eo 2nd ORD.
20888 4th ORD.
const*h

---- const+h

0.01 +——1—5 3
0.01
STEP SIZE h

ERROR IN %

FIG.11. Relative error of vorticity (Eq. {2.31)—comparison of the second-
and fourth-order methods. Other conditions are as in Fig. 9. See text for details.

88 ROKICKI AND FLORY AN

experiments give us in this case NO/NW = 2.5, [f9/[r% = 3.5,
C@/C* ~0.2 — 0.3 (depending on the implementation), where
superscripts @ and @ denote second- and fourth-order methods,
respectively. The relative cost of both algorithms can be calcu-
lated from (2.37), i.e., T9/T®~ 4,5-6.5. Thus, the fourth-
order algorithm does not only give more accurate results for
the same grid as compared to the second-order algorithm, but
it also requires significantly less computational labour to obtain
results with the same absolute error.

2.2. Pressure Problem

2.2.A. Preliminaries

Suppose that velocity ¥V = (i, v) and vorticity { form an exact
solution of the flow problem (2.1a)—(2.1c). The corresponding
pressure p can be obtained from the two-dimensional version
of Eq. (B3) from Appendix A, i.e.,

grad g=F, (2.38a)

where

qg=t+vH2+p, (2.38b)
F=(F,F)
=[wl—{/Re+f,,—ul+ {/Re+f,;] (2.38c)

and subscripts x and y denote differentiation in the respective
directions. Equation (2.38a) has a unique (within a constant)
solution only if [19]

O0=curlF = aF,/dx — &F,/dy. (2.39)
When F is defined by (2.38¢c), condition (2.39) is identically
satisfied (it reduces to the vorticity transport equation). This
shows that Equation (2.38a) is sufficient to determine the pres-
sure field from the known velocity V and vorticity { fields.

Since it 1s more convenient to work with the second-order,

rather than the first-order PDE, we take div of (2.38a) and
obtain the Poisson equation for the total pressure g,

Ag= P+ v, —ul, + divi,. (2.40)
The boundary condition for g is obtained by projecting (2.38a)
either onto the normal unit vector n at the boundary T,

dg/om|; =F -, (2.41)

or onto the tangent unit vector T,

gli=[aglordi= [F-ra=g), t€T. @42

The {ast condition written for the horizontal (y = const) and
vertical {x const) parts of the boundary takes the form

glr = f(vb {/Re +L,)dx (y=const), (243)

gle=[(-ug+ L/Re + B dy, (x=const). (244)

Both the Neumann (2,41) and the Dirichlet (2.42) boundary
conditions can form the basis for evaluation of the pressure
from (2.40). Neumann conditions are used more often cf. {16,
20-22]. In the present work we implement Dirichlet conditions
mainly because they are easier to incorporate in higher-order
discretization schemes.

The equivalence between the original formulation (2.38a)
and the formulation given by (2.40), (2.42) will be discussed
later when considering the sensitivity of the Dirichlet problem
(2.40), (2.42) to disturbances of the right-hand side of (2.38a).
One should note that g(¢) is defined by (2.42) within an additive
constant and, if the boundary consists of disjoint parts (the flow
region is multiply connected), this constant may have different
values on each part. Determination of these constants requires
the solution of additional Dirichlet problems for the Laplace
equation.

2.2.B. Discretization of the Pressure Problem

Selution of the pressure problem consists of three steps. First,
the right-hand side of (2.40) and the boundary conditions (2.42)
or {2.43)-(2.44) have to be evaluated. Here, the main difficulty
consists in evaluation of the derivatives of vorticity. Second,
the just evaluated boundary condition has to be correcied in
order to guarantee a single-valued solution. Third, the Poisson
equation for ¢ with the corrected boundary condition has to be
solved numerically,

We begin our discussion with the fourth-order formulas for
the evaluation of £, and ¢,, that are required in (2.40)—(2.44).
Use of the Taylor expansion gives

S = (& = L)2h — Loh*l6 + O

$30 = (& — $0/2h — L6 + O, (2.45)

where the index notation is explained in Fig. 1. The higher
derivatives of vorticity are expressed as

g}xO = (Aé’)xﬂ - SUXZ)'O! §3y0 = (AZ)yO - g2xy0 (2-45b)

and the required derivatives of the Laplacian of vorticity are
determined from derivatives of the vorticity transport equation
(2.1a), i.e.,

(Ad)wo = Re - [0 80 + todiro + Voo + Voo — (curl F,)l

(AL = Re * [ty Leo T Hodyro + Vyolyo + Uodyyp0 — (curl Fy)yl
(2.46)

DOMAIN DECOMPOSITION FOR NAVIER-STOKES EQUATIONS 89

In the above, &y, denotes @°¢/3 X dy? at point ““0°" (Fig. 1)
and other indices have similar meanings. All the derivatives in
(2.46) and {20, {24y0 in (2.45) should be approximated with
the usual second-order discretization formulas.

The fourth-order formulas for {; and , at the boundary can
be obtained in a similar manner. The required second normal
derivative {,,, has to be known with only second-order accuracy
and can be calculated either by using a non-compact finite
difference formula £, = (24, — 54 + 64 — 35L)IH + O(hY)
or by utilizing the vorticity transport equation i J.o =
(Ag)u - gr-r()'

One should note that since in the calculations the vorticity
transport equation (2.1a) is not enforced at the boundary (see
Section 2.1.B), its repeated use in deriving discretization formu-
las that are used at the boundary may result in deterioration of
the overall accuracy. This reduction is minor, as shown in
Section 2.2.D.

We shall now discuss the appropriate evaluation of the
boundary condition. The function g(¢) in (2.42) is calculated
with fourth-order accuracy by analytically integrating the spline
interpolant of F 7 with F defined by (2.38¢). One should
expect that because of discretization errors, the calculated g(t)
will not be a single-valued function; i.e., if the boundary forms
a closed curve, g{ty will not return to its original value after
making a full ¢ircle. A non-zero coefficient of the form

B=2g(M—g0)= HF - rdt (2.47)

provides a good measure of this nonuniqueness. Here ¢ denotes
arc length measured from a suitable reference point on the
boundary T" while T stands for the total length of the boundary
curve. It 15 shown in the next section that when the actual
(exact) pressure field is a single-valued function, the coefficient
B is O(hY). If the pressure is not a single-valued function
(cf. Section 2.2.D} the coefficient 8 = const + O(A*) where
const = O(1).

Construction of a properly posed boundary problem for g
requires replacing g(¢} in (2.42) with g, (z), obtained by sub-
stracting a linear function from the calculated integral, i.e.,

2.(1) =g — B 1IT= ﬁ)F-TdI

—-B-tT, 1€{0,T), (2.47a)
so that g (T) = g,(0) = 0. Use of g,(#), rather than g(¢) in
{2.42) is necessary in all cases, even if 8 ~ Q(4%).

The boundary problem for the single-valved g, part of ¢ has
the form

Ag,=R=0+v-{—u-{,+divE, (2.483)

q.lr = 8.0 (2.48b)

and is discretized using the general method described in Section

2.1.B with ¢ = ¢, & = ¢ = (. The resuliting system of linear
algebraic equations is solved by using relaxation procedure
(2.11). The numerical cost of obtaining the pressure is almost
negligible in comparison with the cost of determination of the
flow field.

In case 8 = const + Q(hY), first the single-valued part of ¢
is found from (2.48) and then a simple linear solution is added
in order to satisfy the original equation (2.38a). The details are
described in Section 2.2.D.

2.2.C. Error Analysis

The first-order equation for g (2.38a) was replaced, for the
purpose of calculation, by a Poisson equation with the corrected
boundary condition (2.48). The boundary correction may seem
somewhat arbitrary and thus it is necessary to show that the
numerical solution of (2.48) does form a fourth-order approxi-
mation of the exact solution of (2.38a).

It is assumed for the purpose of further discussion that the
flow region {} is simply connected, the pressure is single-
valued, ang all the functions involved are sufficiently regular.
We use a tilde to indicate the calculated values as opposed to
the exact values.

The reader should recall that the vorticity and velocity
fields that are available do not satisfy the exact vorticity
transport equation but only its discretized analog. Thus the
right-hand side of (2.38a) {defined by (2.38c)) can be repre-
sented as

F=gradg+¢-F, (2.49)

where g denotes the exact solution of (2.38a) and € = O(4Y)
is a measure of the magnitude of error ¥, , made in the evaluation
of F. This error arises due to the use of approximate (i.e.,
calculated numerically), rather then exact, values of vorticity
and velocity and due to the approximate differentiation of the
vorticity. The error can be divided, without loss of generality,
into potential and solenoidal components, i.e., as F,= grad ¢,
+ curl ¢, [19]. This shows that F does not satisfy condition
(2.39) and that the vector equation (2.38a) with F on the right-
hand side has no solution. However, Eq. (2.48) rewritten in
terms of F, rather than the original F, does have a unique
solution §,. The difference between g and 4, is estimated
below.

The right-hand side of the Poisson equation (2.48a) was
obtained analytically from F and can be written as

R=R+ O, (2.50)
where the error term results from numerical evaluation of the
derivatives of vorticity in (2.48) and is not directly related to
F.. The boundary function g,{r) obtained from (2.47a) can be
expressed as

90 ROKICKI AND FLORYAN

7,0 = J‘F c7dt — BT = g(n) — 2(0)
+e- J'F*-rdz—,e-:/r
= g(1) — g(0) + e[(1) — ¢(0)
- J’ adylandt] — B+ 1/T + O(h),

(2.51)

where the error term results from the numerical integration
procedure and the evaluation of constant 3 gives

T =~ T
B = J F-rdr=¢- Oj dbs/ém dt. (2.52)

One should note that 8 does not vanish due to the fact that
curl F, # 0. Since £ = O(h"), the difference between g and § w
(2.49)(2.52) satisfies the following:

AG,—q)= R~ R=04" on)
(G, —9) =3, 8.~ &0+ ORY onl. (2.53)

Since the Dirichlet problem for the Poisson equation depends
continuously upon data [19], the solutton of (2.53) can be
represented as

g, —q=const + O(h") on(l (2.54)
This shows that §, is, within an additive constant, a representa-
tion of g with accuracy O(h*).

The formal equivalence between the first-order equation
{2.38a) and the problem (2.48) can be proven using similar
arguments by taking & = () and neglecting approximation errors.
One should keep in mind that when £} is not simply connected
the strict equivalence does not hold and additional Dirichlet
harmonic problems have to be solved (cf. Section 2.2.B). This
is 50 because the harmonic problem Aw = 0 with boundary
condition dw/d1 = 0 on T" admits solutions other than constants,
if) is multiply connected.

2.2.D. Numerical Testing of the Pressure Solution

The artificial solution described in Section 2.1.D cannot be
extended to pressure calculations because neither the fictitious
body force f, needed to calculate F is available, nor can Eq.
(2.38a) be solved analytically. Our testing is therefore limited
to grid convergence studies only. Below we describe results of
testing in the case of test example 2 from Section 2.1.E.

The test problem, i.e., periodic flow in a channel, has two
important features. The first one is that the flow region is
double-connected (the boundary T consists of two disjoint parts
I'; (y=0yand I'; (y = 1)). The second one is that, while the flow
itself is periodic in the x-direction, the pressure may contain a
linear component (similarly as in the case of Poiseuille flow).
Indeed, with the imposed mass flux equal to zero (¢ = 0 on
both walls), a negative pressure gradient in the x-direction is

required in order to balance the driving force resulting from
the presence of the positive tangent velocity at the upper wall.
Because of that, the solution to the pressure problem has to be
represented as

g=q,tA-x+B-y, (2.55)
where g, denotes the periodic solution of (2.48a), such that
4.(0, 0} = q,(0, 1) = 0. Boundary condition (2.48b} simplifies
to the form

g (xy)= _(UJX Sdt—x UJ"l & dt)/Re,

y=0orl,x€{01) (2.56)

because the normal velocity v on I'; and I, vanishes. The
coefficients A and B in (2.55) were calculated using (2.38), i.e.,

1
A=g(l,0) —¢q(0,0) = «{x,0)dx
7.0 =400 = [qmoe

1
- Jle/Reas, y=0

o]
Il

1
0,1)— g(0,0)= [¢,(0,v)d
90,1~ 90,0 = ['4,0,5) dy 058

]
DJ —ui+ {/Redy, x=0.

The integrals (2.56)-{2.58) were evaluated numerically using
the method described in Section 2.2.B. Pressure calculations
were carried out on a sequence of grids (2.27)—(2.28). The
numerical results g, (/1 } were suitably extended onto the whole
boundary, using fourth-order accurate spline interpolation. The
relative error A(f,) between two approximate solutions was
defined as

Ak = max|g,(h) = gD dym, (2.59)
where max was taken over I'y and I'; and ¢ sz Was the maximum
absolute value of the total pressure g, (as found on the finest
grid).

Figure 12 shows the relative error A(#) plotted as a function
of the step size h, for different Reynolds numbers. It can be
seen that the estimated order of accuracy (exponent « in Fig.
13} approaches the expected value of & = 4 in the limit as
h— 0 but at a slower rate then in the case of vorticity (see
Fig. 10). This is so because the vorticity transport equation
used in deriving boundary conditions was not enforced at the
boundary as explained in Section 2.2.C. The error of pressure
A(h,) was found to be dominated by the error associated with
evaluation of the normal derivative of vorticity on I'; (upper
boundary). The same error analysis was performed for the
coefficients A and B calculated from (2.57), (2.58) and a similar
pattern of convergence leading to ¢ = 4 as h — 0 was obtained.

DOMAIN DECOMPOSITION FOR NAVIER-STOKES EQUATIONS 91

107
o -2
o 10
&
L -3,
10 20
108
-4 50
10 1000
---- const*h
10 ~®
o 0.1

01
STEP SIZE h

FIG. 12. Estimated relative error of the total pressure ¢ « (Eq. (2.59)).
Other conditions are as in Fig. 9.

Figure 14 shows topology of pressure distribution for Re =
100. This nonperiodic pressure field was calculated (cf. (2.38b)
and (2.55)) from the formula p = (u* + v3/2 + (g, + Ax +
By), where A = —0.035677, B = —0.034427. The pressure
was normalized by setting it to zero at the lower left corner.

3. MULTIDOMAIN (MULTIPROCESSOR)
IMPLEMENTATION

3.1. Preliminaries

The domain decomposition methodology consists in dividing
the computational domain into overlapping subdomains and
solving the original probiem on each subdomain separately,
with the appropriate transfer of information between the
neighbouring subdomains. Use of this methodology offers two
advantages. First a tremendous acceleration of calculations is

51

=T T T

0.01 0.1

STERP SIZE h

FIG. 13. Estimated order of discretization error of the total pressure g -
error = const - A% Other conditions are as in Fig. 10.

o ——
‘-So.ajl

—]

ST
AP

(’ -~
v ’
8]
\ S
/
\

X

-..45

Gy

FIG. 14, Pressure distribution p = ¢, + Ax + By + (s’ + £)/2 (X1000)
for Re = 100, Section 2.2.1.

possible, because each subdomain can be served by a different
processor, with all the processors working concurrently. Sec-
ond, modelling of complicated geometries can be simplified by
breaking them into a union of geometrically (or topologically)
simple subdomains.

Success of domain decomposition in accelerating the overall
calculations depends strongly on the configuration of subdo-
mains and on the strategy for information transfer between
them. The questions of practical interest are (i) how the size 8
of the overlap between subdomains affects the convergence
speed, (1i) how often information between various subdomains
should be exchanged, and (ii1) what type of information should
be transferred between the subdomains.

The general theory of the domain decomposition method for
a second-order, linear elliptic PDE (Lions in [11]) states that
this method is geometrically convergent, provided that the over-
lapping is uniform and the Dirichlet boundary information is
transferred. The convergence rate is equal to

1—C-8 (<), 3.1
where & characterizes size of the overlap between neighbouring
subdomains and the positive constant C depends both on the
spectrum of the elliptic operator in question and on the dimen-
sion of the problem.

The Navier—Stokes equations (2.1a)~(2.1c), written in terms
of streamfunction ¥ form a fourth-order, biharmonic-like equa-
tion. The existing single-domain algorithms assume that either
ty and d¢f/dn or ¢ and £ = — Ay are known at the boundary.
It is not clear which of these quantities should be transferred
between subdomains to guarantee convergence of the algo-
rithm. We shall begin the analysis by considering at first a very
simple one-dimensional model problem and then use these
results as guidelines in constructing the aigorithm for the com-
plete Navier—Stokes equations.

92 ROKICKI AND FLORYAN

3.2, The Model Problem
Consider a boundary value problem for the fourth-order,
linear, ordinary differential equation in the form
w" =0 onf)=(0,2)
w()=w' (=20
w2y=w'(2)=0

(3.2)

which has a trivial solution. In the above, w and w” can be
viewed as representing respectively ¢ and A = —Zin (2.1a)-
(2.1c) with Re = 0. Let the domain) be divided into two
overlapping subdomains £, and {2, defined as
Q=01+8 Q,=00-5§2, 0<8=1,
with § denoting the overlap size. The solution algorithm consid-

ered here consists in solving alternatingly the following two
problems:

LwlP=0 on{}

wi(0) =w3(0) =0, wi(1+8)=wyfl +8),

wi(l + 8} = wi(1 + &)

II. W%V =0 on Qz

wi2)=wi(2) =0, wy(l —) =w(l - 9), (3.3)

wi(1 — 8) = wi(1 — &),

starting with arbitrary non-zero values of w, and w,. We shall
consider three types of information transfer, ie., s = 1,2, 3
in boundary conditions in (3.3). In the first one, information
about the solution function and its first derivative in the overlap
region is transferred; in the second one information about the
function and its second derivative is transferred; and in the third
one the second derivative is replaced by the third derivative,

One can write two problems forming (3.3) in a unified form as

L. wi¥ =0 on{0,1+ 68
w0} = wol®) = 0, wp(1+ 8 =8,

wii(l + &) = 0,, (3.4)

where

g = w1 = 8), 6= (-1y w1 -6 (3.3
and superscript P denotes previous iteration. Indeed, substitut-
ing welx) = wi(x) into (3.4) in the odd iterations and
we(x) '=wy(2 — x) in the even iterations gives exactly the

TABLE I

Estimated Convergence Rates for the Domain Decomposition
Algorithin for the Model Problem of Section 3.2

Quantities transferred

w, dwldx(s=1) w, 0%w/ax? (5 = 2) w, a5 =3)

| Az 1— 8- 88
n~ 1/8 - 873

1 —-3-8 i
1/3 - &7 o

Note. Ay, = maximum eigenvalue of the teansfer matrix B*', N = estimated
number of iterations.

alternating systemn (3.3). The exact solution to the general prob-
lem (3.4) has the form

wy(x) = x?- {ax + b), (3.6)

where constants a and b are chosen from boundary conditions
atx = 1 + & Since (3.6) is linear with respect to a and b, the
dependence of © = (8, 6)) on (a, b) is also linear. This permits
us to write the following relation at point x = 1 — & (where
the transfer of information (3.5) takes place):

woll — &) = B8, + 5,6,

Wg)(l - 6) = B21 0] + 82262. (37)

In the above, By are functions of § alone (different for s = 1,
2, 3). Combining (3.7} and (3.5) we get the transfer relation
OMY = B, - O°P with matrix B, in the form

[By B]
B, = :
(1Y 8y (—1YByn

The convergence rate of the domain decomposition algorithm
{3.3) is fully determined by the modulus of the largest eigen-
value |/\maxJ of the matrix B, . If this modulus is less than one,
the convergence is geometricai; otherwise the algorithm is not,
in general, convergent. The number of iterations N that are
necessary to reach the prescribed accuracy can be estimated
as N ~ —1/log| A, }. Matrix B_ and its eigenvalues can be
determined analytically. Details of this derivation are omitted
due to its length. Table I gives expressions for | Ay, | when 8
is small for s = 1, 2, 3 and the corresponding number of
iterations N. It is worth nothing that B, possesses two distinct
real eigenvalues for s = 1, 3 and complex eigenvalues fors = 2.

Analysis of the results given in Table I shows that the algo-
rithm is practical for s = 2, i.e., when values of the function
and its second derivative are transferred between subdomains.
The convergence rate is similar to the one given by (3.1). In
contrast, the first case (s = 1) requires an enormous number

(3.8)

DOMAIN DECOMPOSITION FOR NAVIER-STOKES EQUATIONS 93

10°3 o
AN
ﬂ\
ooopo g=1 N
1o+ FEmRR s=2 Oy
] e constd” “a
0 i ===~ const*d N
Z A
Q 1 #. B
£10°% ey,
@ W
L *..
= g,
] *.
10 23 MR
; =
]
10 IT'.‘T'].z L A

OVERLAP SIZE &

FIG. 15. Testing of convergence speed of the domain decomposition algo-
rithm using different data transfer strategies for the model problem from Sec-
tion 3.2.

of iteration and thus is impractical, while for s = 3 the algorithm
is not convergent.

Analytical results discussed above were verified numerically
for the discrete version of (3.4). The equation was discretized
using standard second-order finite-difference formulas and its
solution was sought using an algorithm equivalent to the one
described in Section 2.1.A. The solution process consisted in
splitting of (3.4} into two separate, second-order equations (the
first one for w, and the second one for wg). The boundary
condition for wg was adjusted in the inner iteration loop using
the boundary formula similar to the one described in Section
2.1.C. The information was transferred between subdomaing
only after the convergence of the inner iteration loop was
achieved. The number of iterations of the domain decomposi-
tion algorithm (i.e., the number of information transfers) re-
quired to obtain accuracy of 1077 is plotted in Fig. 15 as a
function of the length & of the overlap region. The results show
full qualitative agreement with the analytical predictions given
in Table L. In the case of s = 3 the algorithm was not convergent
as predicted.

3.3. Characteristic Functions on Subdomains

There are various possible implementations of the domain
decomposition method if the domain £} is split into more than
two subdomains, especially if there is multiple overlapping.
The variant chosen here will be described by at first defining
the characteristic functions on subdomains. These functions
will be used in Section 3.4 to compose the complete solution on
€} from the solutions determined on each of the subdomains €},

Consider a bounded, connected open domain £} € R* (n =
1, 2, 3) that is split into K (connected) subdomains €1, ..., {k
(cf. Lions in {11]) such that {3 =), U 0, U ... U ;. We

denote by I' and I'; the boundaries of {2 and {};, respectively
(j=1,2, .., K} Let y; = TAI be the interface on which the
information transfer to the jth subdomain takes place. Let A be
an arbitrary point in { and its internal distance d;(4) from the
interface +y; be defined as

0, AgQ,
pld,y), A€,

(3.9
where p{A, y;) stands for the distance between the point A and
the interface ;. The largest internal distance from any interface
7; is denoted by

d(A) = max dj(A). (3.10)

..... K

The ““smallest’” d(A) over the whole (} defines the characteristic
size & of the overlap structure

&= inf d(A} = inf max d;(A).

AEQ AEfL j=1...K

G.1D

We consider only the case when § is positive, which means
that for every point A € (1 the internal distance between this
poing and at least one of the interfaces y; (f = 1, 2, ..., K} is
greater than or equal to 8 This implies uniform overlapping
as defined by Lions in [11].

The characteristic function y; is defined by the formula

K
XA =d(AVS, §=3 dA), j=1,2,..K, (312
=1

and has the following properties:

i) 0= y,(4) < 1 (3.13a)

Gi) x(4)=0 ifA¢Q, (3.13b)

(i) y;(A)=1 ifA € QJ-,A & 0 (k+)) (3.13¢)

4 K

) > xi{A)y=1 forevery A € (3.13d)
=

(V) |Vx;l =2 - (K + 1M/8, wherever Vy; exists. (3.13e)

To prove the last inequality observe that Vy, = (Vd,/§
- V§)/S. Since d/S = 1 and § = d = § we obtain |[Vy,| =

X
(|Vd,| + > |Vd,|)/8. Consider now the sphere of radius 8, < &
=1

with the centre at the point A, such that every interface v,
{p =1, .., K) lies outside this sphere (cf. (3.9)—(3.11}). For
every point B of this sphere we have d,(A) — p(A, B) =
d,(B) = d,(A) + p(A,B),g = 1,2, ..., K, and | d (A) — d,(B)|/
plA, BY = 1, where p(B, A) is a distance between A and B.
Consequently, |Vd, |, if it exists, is bounded; ie., |Vd,| = 2.

94 ROKICKI AND FLORYAN

Combining this with the estimate for Vy; given above, one
obtains (3.13e).

Properties (3.13a)—(3.13e) are analogous to those which are
necessary to guarantee geometric convergence of the domain
decomposition algorithmn in the case of a second-order elliptic
PDE (Lions in [11]) with the convergence rate given by (3.1).

3.4. Transfer of Boundary Information

The characteristic functions Y, ..., yx introduced by (3.12)
are used here to describe data transfer between subdomains.
One may note that when more than two subdomains overlap,
the simple alternating algorithm of Section 3.2 does not apply.

Consider that wy, ..., wg are known continuous functions and
that each w; is defined on the corresponding subdomain {1, (w;
represents the solution obtained on the jth subdomain). Let
each w; be extended to the whole £} by any constant (e.g.,
wid) = 0 if A & ;). The combined function w can be
defined as

w(A) =Y x(Aw;A), AEQ, (3.14)
j=1

where w represents the resulting solution on (2. The function
w(A) is continuous and reduces to w;(A) if A € (}; and A &
€y (k £ j). This property stems directly from (3.13c). The new
boundary condition for w; (j = 1, 2, ..., K) on the interface {2,
is obtained by taking the value of w(4) on vy;, ie.,

wi¥(A) = w(d), AEy,. (3.15)

One may note that this new boundary condition for w; is influ-
enced only by the information from the neighbouring subdo-
mains and not by the old boundary value of w;. This is so
because x;(A) = 0 if A € +y;. lf the splitting inte subdomains
is such that only two subdomains are permitted to overlap, then
procedure (3.14)—(3.15) resembles the one already described
in Section 3.3.

3.5. Domain Decomposition Algorithm for the
Navier-Stokes Equations

The algorithm consists of the following steps:

1. initialize boundary counditions on each interface y; (e.g.,
Y, {=0onvy,j=1 .,K),

2. perform P iterations of algorithm decribed in Section
2.1.A to solve Navier—Stokes equations on each subdomain
separately (these calculations can be carried out simultaneously
on the different processors),

3. calculate the combined function ¢ and { defined on
whole (), using (3.14) and values of i; and ¢; determined in
step2forall 4, (j =1, ., K},

4. use (3.15) to calcuiate the new boundary values of i
and ; on all interfaces v; (j = 1, ..., K,

5. check for convergence of ¢ and { on interfaces; if there
is no convergence return to step 2.

An algorithm that transfers information regarding the normal
derivative of streamfunction 9/ on, rather than vort1c1ty g, can
be constructed in a similar manner.

The domain decomposition method described in Section 3.1
required that the data be transferred between subdomains only
after the exact solution on each subdomain was found (P very
large). When this solution is to be found iteratively, it is benefi-
cial to interchange the domain decomposition iterations with
the equation solver iterations. Our expzriments with a single
processor computer show that the algorithm requires the least
tirne when P is equal one. This estimate does not account for the
time that is required to transfer information between different
processors. This time may be of the same order of magnitude
as the time necessary to perform single iteration of the flow field.

The structure of our algorithm (with ¢ and ¢ being trans-
ferred) is such that it solves two separate second-order elliptic
PDEs using iteration processes that are almost completely de-
coupled. Indeed, one could use the domain decomposition
method to solve Egs. (2.4) and (2.5) separately. This explains
why the algorithm has to fulfil the convergence conditions (due
to domain decomposition) that are identical to those derived
in context of second-order linear PDEs (cf. Section 3.3), If
information about ¢ and d¢/0n are transferred between subdo-
mains this separation property obviously does not hold.

3.6. Numerical Testing of the Algorithm

The algorithm described in Section 3.5 was tested using
examples described in Section 2.1.E. Two types of splitting of
the flow domain £} were employed, i.e., splitting into a sequence
of either vertical or horizontal rectangles (Fig. 16a), with not
more than two subdomains overlapping, and splitting into a
matrix-like structure of almost square subdomains (Fig. 16b),
with up to four subdomains overlapping simultaneously. For
periodic domains there was also an overlapping between subdo-
mains that share the periodic boundary. The overlap between
subdomains was measured by 8 (3.11), which in this case
was equal to half the width of the overlapping rectangle. The
caleulations were performed for different 8, including the small-
est possible overlap 26 = h, where h stands for the discretization
step size. All calculations described here were done using a
single-processor computer.

Two variants of the domain decomposition method were
tested, the first one with v and d¢7/5n and the second one with
¢ and { being transferred between subdomains. In the former
case, the algorithm described in Section 3.5 did not converge
(the reader may recall that the model problem of Section 3.2
predicted an extremely low convergence rate).

It is of interest to check whether domain decomposition can
influence the effective accuracy of the discretization schemes.

DOMAIN DECOMPOSITION FOR NAVIER-STOKES EQUATIONS g5

- N [INTERFACES
— BOUNDARY

R
1
. dn
.
v
'
i
'
i
.
H
.
H
:
H
i
'
’
i
i
.
[
1
1
i
'

-+
1
'
H
v
i
H
1
1
i
E
H

Ty
1

FIG. 16. Domain decomposition: (A) strips with single overlapping; (B)
matrix-like structure with multiple overlapping.

Results of our numerical experiments show the absence of any
such effect; i.e., in all cases the fourth-order accuracy of the
solution was maintained.

The acceleration of calculations due to use of several proces-
sors, with each one serving a different subdomain, is best de-
scribed by at first defining an acceleration factor in the form

A(K) = W(K)/W(1),

where W(K) stands for the work effort associated with K proces-
sors (serving K subdomains) and W(1) denotes the work effort
of a single processor (single domain calculations). The accelera-
tion factor cannot exceed the number of processors K and
this defines the maximum theoretically possible acceleration of
calculations. If A(K) is less than one, application of the domain
decomposition brings no benefits. The work effort of a hypo-
thetical K-processor computer can be defined as

WK) = [1 + OVL®)] - N(KYK.

In the above, N(K) stands for the number of iterations of the
domain decomposition algorithm (Section 3.5), with each itera-
tion consisting of a fixed number P of inner cycles of the
Navier—Stokes solver. The work effort is reduced by a factor
K because each of the K-processors will be serving 1/K part
of the total grid, and it is increased by a factor of (1 + OVL)
because the total number of grid points increases due to overlap
between the subgrids. Here, OVL~ § <€ 1.

The acceleration factor calculated for the type of domain
decomposition shown in Fig. 16b and with the smallest possible
overlap 26 = h is displayed in Fig. 17 for various step sizes
h. The results demonstrate that it is possible to come very close
to the maximum theoreticaily possible acceleration rate and
that the advantage of multiprocessing increases for increasing
problem size. Similar results were also obtained for the type
of domain decomposition shown in Fig. 16a.

4. CONCLUSIONS

A fourth-order finite-difference algorithm to solve Navier—
Stokes equations in the streamfunction—vorticity formulation
was developed. Various boundary formulas for vorticity were
investigated, including new third- and fourth-order implicit for-
mulas. An algorithm for calculation of pressure from the known
velocity and vorticity fields was also presented.

Results of extensive numerical tests show that the algorithm
does deliver fourth-order accuracy. The error has been esti-
mated as being proportional to Re? - k*. Comparison with a
similar second-order algorithm shows that fourth-order algo-
rithms require 4-6 times less computational time to obtain
results with the same accuracy.

The domain decomposition method was incorporated into
the algorithm in order to investigate performance gains resulting
from the use of multiprocessor computers. It was determined
that the algorithm converged only when information about the
streamfunction and the vorticity was transferred between subdo-
mains. The overall accuracy was not affected by use of the
domain decomposition.

101
9_ ____________________
8 ' Eee8a 4 SUBDOMAINS
x] aesen § SUBDOMAINS
O
i
=z
O
'
ox
il
-l
L
Q
[
<C
‘l_
P S I S RN I

1
STEP SIZE h

FIG. 17. Acceleration of calculations due to use of several processors,
with each of them serving a different subdomain. Results for the flow described
in Example 2 in Section 2.1.E with Re = 20.

96

Acceleration of the calculations very close to the maximum
theoretically possible was observed. The advantage of multipro-
cessing increased with increasing the problem size.

APPENDIX A

The pressure equation can be derived from the momentum
equation written in terms of primitive variables, i.e.,
(V-VI}¥V = -Vp+ AV/Re + £, (Al)

where V = (&, v,w) denotes the velocity vector and £, = (f,4,

fees fo3) stands for an external body force vector. Use of the
vector identities

(V- V)V=grad V¥2 - VXV XV, Vl=V.V

AV =graddivV -V XV XV (A2)
and the zero velocity divergence assumption transforms (Al)
(cf.[23, 22]) into

grad g = F, (A3)

whereq=V/2+p F=V X VXV -VXVXV/Re+{,.

REFERENCES

1. 5. C. R. Dennis and J. D. Hudson, ‘A Difference Method for Solving the
Navier—Stokes Equations,” in Proceedings, First International Conference
on Numerical Methods in Laminar and Turbulent Flow, Swansea, United
Kingdom, 1978, edited by C. Taylor et al. (Pentech, London, 1978), p. 69.

2. R. K. Rubin and P. K. Khosla, J. Comput. Phys. 24, 217 (1977).

3

o

© m oo

20.
21.
22,

23

ROKICKI AND FLORYAN

. R. 8. Hirsh, J. Compur. Phys. 19, 90 (1979},
. 8. C. R. Dennis and J. D. Hudson, J. Comput. Phys. 85, 390 (1989).

. M.M. Gupta, R. P. Manohar, and J. W. Stephenson, Int. J. Numer. Methods
Fluids 4, 641 (1984).

M. M. Gupta, J. Comput. Phys. 93, 343 (1991).

M. M. Gupta and R. P. Manohar, J. Comput. Phys. 31, 265 (1979).

. R. Glowinsky and O. Pironneau, SIAM Rev. 21, 167 (1979).

S. C. R, Dennis and L. Quartapelle, Int. J. Num. Methods Fluids 9, 871
(1989).

. L. Quartapelle and F. Valz-Gris, fnt. £. Num. Methods Fluids 1, 129 (1981).

. R, Glowinsky et al. (Eds)) First International Symposium on Domain
Decomposition Methods for Partial Differential Equations (SIAM, Phila-
delphia, 1988).

. T.F. Chan er al. (Eds.), Domain Decomposition Methods (STAM, Philadel-
phia, 1989).

. T.F. Chan (Ed.), Proceedings, Third International Symposium on Domain
Decomposition Methods for Partial Differential Equations (SIAM, Phila-
delphia, 1990}.

. R. Glowinsky et al. (Eds.) Fourth International Symposium on Domain
Decomposition Methods for Partial Differential Equations (SIAM, Phila-
delphia, 1991).

. 1. 8. B. Gajjar, Compur. Phys. Commun. 37, 303 (1983).

. P. I. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque,
NM, 1976).

. D. F. Roscoe, J. Inst. Math. Appl. 16, 291 (1975).

. J. M. Floryan and L. Czechowski, Research Report ESFD-2/93, Dept. of
Mechanical Engineering, University of Western Ontario, Canada, 1993 (un-
published).

. V.Giravlt and P.-A. Raviart, Finite Element Approximation of the Navier—
Stokes Equations (Springer-Verlag, Berlin/Heidelberg/New York, 1981}

S. A. Orszag, M. Israeli, and M. O. Deville, . Sci. Compur. 1, 75 (1986).
P. M. Gresho and R. L. Sani, Jnt. f. Num. Methods Fluids 7, 1111 (1978).

M. Q. Gunzburger, Finite Element Methods for Viscous Incompressible
Flows (Academic Press, San Diego, 1989).

. J. Rokicki and A. Styczek, Arch. Budowy Maszyn 39, Z4, 351 (1992).

